Synthesis of the key component for preparation of 6-ketoprostaglandins by a two-component coupling process: synthesis of 6-keto-prostaglandin E_{1}, ornoprostil and Δ^{2}-trans-6-ketoprostaglandin \mathbf{E}_{1}

Yasufumi Kawanaka, Naoya Ono, Yukio Yoshida, Sentaro Okamoto and Fumie Sato*
Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226, Japan

Starting with commercially available (3S,4R)-3-(methoxymethyloxy)-2-methylidene-4siloxycyclopentanone 2, useful 6-keto-prostaglandin intermediates 1 have been prepared in good yields by a sequence of reactions which includes treatment with NaBr in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{Pd}$-catalysed coupling of the resulting 2-bromomethyl-4-siloxycyclopent-2-enone 3 with the alkenylborane 4 or 9 and conversion of the alkenyl moiety into an epoxy and then into a keto group. The synthesis of 6-keto-PGE ${ }_{1}$, ornoprostil and Δ^{2}-trans-6-keto-PGE ${ }_{1}$ by using 1 is also described.

Naturally occurring 6-keto-prostaglandin $\mathrm{E}_{1}\left(6-\mathrm{PGE}_{1}\right)$ has attracted substantial interest, because it plays an important role in human physiology. ${ }^{1}$ Artificial 6-keto-prostaglandins have also attracted much interest as being useful therapeutic agents, ${ }^{2}$ and, since only chemical synthesis can supply sufficient quantities, ${ }^{3}$ much effort has been expended in this area.

In connection with our interest in establishing a twocomponent coupling synthesis of PGs as an efficient and industrially viable process, ${ }^{4}$ we were interested in the development of a practical and general method for synthesis of 6 -keto-PGs by this methodology. Herein reported is an efficient synthetic method for preparation of endo-enones 1 which have 6 -keto α-side chains from readily available starting material $2 \dagger^{4 a}$ and synthesis of 6 -keto-PGs by 1,4 -addition of ω sidechain units to 1 (Scheme 1).

Scheme 1

Results and discussion

The synthetic procedure of $\mathbf{1}$ from $\mathbf{2}$ is summarized in Scheme 2. The reaction of 2 with NaBr in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ provided 2-bromomethyl-4-siloxycyclopent-2-enone 3 in 89% yield. Coupling of $\mathbf{3}$ with the alkenylborane $\mathbf{4}$, synthesized in situ by the hydroboration of the corresponding alkyne with

[^0]

Scheme 2
$\mathrm{BH}\left(\text { cyclo- } \mathrm{C}_{6} \mathrm{H}_{11}\right)_{2},{ }^{5}$ in the presence of $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ afforded 5 in 81% yield. ${ }^{6}$ The conversion of 5 into $1\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ was carried out in 73% overall yield by regiospecific epoxidation with m-chloroperbenzoic acid followed by treatment of the resulting crude compound 6 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. ${ }^{7}$
With compound $1\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ in hand, it was possible to synthesize 6 -keto-PGs having a variety of ω side-chain units by 1,4 -addition. Reported next is the synthesis of naturally occuring 6 -keto- PGE_{1} and ornoprostil which is currently marketed as an anti-ulcer agent (Scheme 3). Thus, the reaction of $1\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ with the alkenylcopper compound 7 a provided the bis-silyl ether of 6 -keto- PGE_{1} methyl ester 8 a in 74% yield. Similarly, ornoprostil was prepared by the reaction of $1\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ with the alkenylcopper compound 7b (74%) and the following protodesilylation using HF-pyridine in acetonitrile (93%).
The present methodology also allows the synthesis of PGs having various 6 -keto α side-chains other than natural ones by changing the alkenylboranes used for the coupling with $\mathbf{3}$ in Scheme 2. Although PGs having a trans-double bond at the 2 position (Δ^{2}-trans-PGs) have attracted much pharmaceutical interest, ${ }^{8} \Delta^{2}$-trans-6-keto-PGE ${ }_{1}$ has not been developed. Thus, we were interested in synthesizing Δ^{2}-trans- 6 -keto- PGE $_{1}$ by using the present methodology. The enone $1[\mathrm{R}=(E)$ -

Scheme 3
$\mathrm{CH}=\mathrm{CH}]$ was prepared by using the alkenylborane 9 , generated in situ by the hydroboration of the corresponding alkyne with $\mathrm{BH}\left(\text { cyclo- } \mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}$, instead of $\mathbf{4}$ in the coupling step with $\mathbf{3}$ in Scheme $2(48 \%$ overall yield from 3$)$. The reaction of $1[R=$ (E) $-\mathrm{CH}=\mathrm{CH}$] with the organocopper compound 7a afforded 10 in 71% yield which, in turn, was converted into Δ^{2}-trans- 6 -keto-PGE ${ }_{1}$ by successive treatment with HF-pyridine (95%) and porcine liver esterase (84%).

In summary, a highly efficient method for the synthesis of 1, the key intermediate for the preparation of 6 -keto-PGs, has been developed, which involves (i) the preparation of 2-bromomethyl-4-siloxycyclopent-2-enone $\mathbf{3}$ from commercially available 2, (ii) the Suzuki-Miyaura coupling reaction of $\mathbf{3}$ with alkenylboranes and (iii) the conversion of the vinylsilane moiety of the coupling product into the keto group.

Experimental

IR spectra were determined using a JASCO A-100 spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were determined in CDCl_{3} (SiMe_{4} or residual CHCl_{3} as internal reference) using a Varian Gemini-300 spectrometer operating at 300 MHz for ${ }^{1} \mathrm{H}$ NMR or at 75 MHz for ${ }^{13} \mathrm{C}$ NMR. The J values are in Hz . $[\alpha]_{\mathrm{D}}$ Values were determined using a JASCO DIP-370 polarimeter. Mass spectra (FAB-HRMS) were measured with a JEOL JMX-102 spectrometer. Column chromatography was carried out with Wako Silica gel C-200 (100-200 mesh) and TLC was carried out with Merck Kieselgel $60 \mathrm{~F}_{254}$.

(R)-2-Bromomethyl-4-(tert-butyldimethylsiloxy)cyclopent-2enone 3

Sodium bromide ($2.33 \mathrm{~g}, 22.69 \mathrm{mmol}$) and boron trifluoridediethyl ether ($1.54 \mathrm{~cm}^{3}, 12.49 \mathrm{mmol}$) were added under an atmosphere of dry argon to a solution of $2(3.25 \mathrm{~g}, 11.35 \mathrm{mmol})$ in acetone $\left(57 \mathrm{~cm}^{3}\right)$ at ambient temperature. After being stirred for 0.5 h , the mixture was poured into a stirred mixture of saturated aqueous $\mathrm{NaHCO}_{3}\left(100 \mathrm{~cm}^{3}\right)$ and ether $\left(150 \mathrm{~cm}^{3}\right)$. The organic layer was separated and the aqueous layer was extracted with hexane ($50 \mathrm{~cm}^{3}$). The combined organic layers were washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and saturated aqueous $\mathrm{NaHCO}_{3}\left(50 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford $3(3.1 \mathrm{~g}, 89 \%)$ as a clear oil; $[\alpha]_{\mathrm{D}}^{25}+28.4\left(c 1.09\right.$ in $\left.^{2} \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 2930,2852,1710$, $1460,1342,1250,1082,906,830$ and $775 ; \delta_{\mathrm{H}} 0.12$ and 0.14 (each $3 \mathrm{H}, 2 \mathrm{~s}), 0.90(9 \mathrm{H}, \mathrm{s}), 2.36(1 \mathrm{H}, \mathrm{dd}, J 18.0,2.2), 2.83(1 \mathrm{H}, \mathrm{dd}, J$ $18.0,6.0), 4.02(2 \mathrm{H}, \mathrm{s}), 4.91-4.97(1 \mathrm{H}, \mathrm{m})$ and $7.38-7.41(1 \mathrm{H}$, $\mathrm{m}) ; \delta_{\mathrm{c}}-4.7(2 \mathrm{C}), 18.1,21.0,25.9(3 \mathrm{C}), 45.6,68.6,142.9,160.5$ and 202.8 (Found: C, $47.5 ; \mathrm{H}, 7.0 . \mathrm{C}_{12} \mathrm{H}_{21} \mathrm{BrO}_{2} \mathrm{Si}$ requires C, 47.2; H, 6.9\%).

(R)-4-(tert-Butyldimethylsiloxy)-2-[(Z)-6-methoxycarbonyl-2-

 trimethylsilylhex-2-enyl] cyclopent-2-enone 5Under an atmosphere of dry argon, cyclohexene $\left(0.2 \mathrm{~cm}^{3}, 2.0\right.$ mmol) was added to a solution of borane-tetrahydrofuran (1 $\mathrm{mol} \mathrm{dm}{ }^{-3} ; 1.0 \mathrm{~cm}^{3}, 1.0 \mathrm{mmol}$) in tetrahydrofuran at $0^{\circ} \mathrm{C}$. After being stirred for 1.5 h at $0^{\circ} \mathrm{C}$, the mixture was treated with a solution of methyl 6-trimethylsilylhex-5-ynoate ($0.20 \mathrm{~g}, 1.0$ mmol; prepared from 6-trimethylsilylhex-5-ynoic acid ${ }^{9}$ by treatment with a catalytic amount of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and MeOH at room temperature for 10 h) in tetrahydrofuran (1.5 cm^{3}). The resulting mixture was stirred for 1 h at ambient temperature to afford a solution of the alkenylborane reagent 4 (theoretically $\left.0.345 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right)$. In a separate flask, $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ ($19 \mathrm{mg}, 0.0164 \mathrm{mmol}$), a solution of the alkenylborane 4 prepared above and aqueous $3 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}\left(0.22 \mathrm{~cm}^{3}\right.$, $0.656 \mathrm{mmol})$ were added to a solution of compound $\mathbf{3}(100 \mathrm{mg}$, 0.327 mmol) in benzene ($3.3 \mathrm{~cm}^{3}$) at ambient temperature. The resulting mixture was stirred at $65^{\circ} \mathrm{C}$ for 1 h after which it was cooled to ambient temperature and extracted with ether (2×5 cm^{3}). The combined extracts were washed with aqueous 1 mol $\mathrm{dm}^{-3} \mathrm{HCl}\left(3 \mathrm{~cm}^{3}\right)$ and saturated brine $\left(5 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give 5 (112 $\mathrm{mg}, 81 \%$) as a clear oil; $[\alpha]_{\mathrm{D}}^{25}+5.54$ (c 1.03 in CHCl_{3}); $\nu_{\max } / \mathrm{cm}^{-1} 2960,2852,1710,1435,1350,1248,1160,1078,835$ and $775 ; \delta_{\mathrm{H}} 0.09$ and 0.11 (each $\left.3 \mathrm{H}, 2 \mathrm{~s}\right), 0.08(9 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}$, s), $1.65-1.77(2 \mathrm{H}, \mathrm{m}), 2.15-2.25(3 \mathrm{H}, \mathrm{m}), 2.33(1 \mathrm{H}, \mathrm{d}, J 7.5)$, $2.74(1 \mathrm{H}, \mathrm{dd}, J 18.3,5.9), 2.80-2.95(1 \mathrm{H}, \mathrm{m}), 3.67(3 \mathrm{H}, \mathrm{s}), 4.82-$ $4.88(1 \mathrm{H}, \mathrm{m}), 5.93(1 \mathrm{H}, \mathrm{t}, J 7.2)$ and $6.88-6.93(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}$ -4.71 (2 C), 0.13 (3 C), 18.0, 25.1, 25.7 (3 C), 31.3, 32.8, 33.5, 45.7, 51.5, 68.7, 136.4, 144.6, 147.2, 157.8, 173.8 and 205.5 [Found: m / z (FAB-HRMS) $\mathrm{M}+\mathrm{K}^{+}$, 463.2075. $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{~K}-$ $\mathrm{O}_{4} \mathrm{Si}_{2}$ requires $\left.M \mathrm{~K}^{+}, 463.2102\right]$.

(R)-4-(tert-Butyldimethylsiloxy)-2-(6-methoxycarbonylhexan-2-on-1-yl)cyclopent-2-enone $1\left(\mathbf{R}=\mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{2}\right)$

m-Chloroperoxybenzoic acid $[70 \%(0.463 \mathrm{~g})$; net: $0.324 \mathrm{~g}, 1.88$ $\mathrm{mmol}]$ was added to a solution of $5(613 \mathrm{mg}, 1.44 \mathrm{mmol})$ in dichloromethane ($14 \mathrm{~cm}^{3}$) and the mixture was stirred at ambient temperature for 1 h . After this the mixture was treated with saturated aqueous $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and diluted with diethyl ether ($10 \mathrm{~cm}^{3}$). The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give crude compound 6 , which was used in the next reaction without purification.

Boron trifluoride-diethyl ether ($2-3$ drops, $c a .100 \mathrm{~mm}^{3}$) was added to a solution of the crude compound 6 in $\mathrm{MeOH}\left(14 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. After being stirred for 0.5 h the mixture was treated with saturated aqueous $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and diluted with ether $\left(10 \mathrm{~cm}^{3}\right)$. The organic layer was separated, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give 1 ($\mathrm{R}=$ $\mathrm{CH}_{2} \mathrm{CH}_{2}$) $\left(388 \mathrm{mg}, 73 \%\right.$ from 5) as a clear oil; $[\alpha]_{D}^{25}-3.90(c$ 0.93 in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 2940,2850,1710,1630,1455,1430$, $1400,1340,1240,1190,1160,1079,960,906,828$ and $768 ; \delta_{\mathrm{H}}$ 0.11 and $0.12(\operatorname{each} 3 \mathrm{H}, 2 \mathrm{~s}), 0.90(9 \mathrm{H}, \mathrm{s}), 1.55-1.70(4 \mathrm{H}, \mathrm{m})$, $2.27(1 \mathrm{H}, \mathrm{dd}, J 18.3,2.1), 2.26-2.36(2 \mathrm{H}, \mathrm{m}), 2.48-2.55(2 \mathrm{H}$, $\mathrm{m}), 2.76(1 \mathrm{H}, \mathrm{dd}, J 18.3,5.9), 3.22(1 \mathrm{H}, \mathrm{d}, J 17.3), 3.39(1 \mathrm{H}, \mathrm{d}$, $J 17.3), 3.65(3 \mathrm{H}, \mathrm{s}), 4.94-4.99(1 \mathrm{H}, \mathrm{m})$ and $7.30-7.32(1 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}-4.7(2 \mathrm{C}), 18.1,23.0,24.3,25.8(3 \mathrm{C}), 33.7,37.7,42.6,44.7$, 51.5, 69.2, 139.4, 160.3, 173.7, 205.2 and 205.6; FAB-HRMS [Found (FAB-HRMS): $\mathrm{M}+\mathrm{K}^{+}$, 407.1677. $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{KO}_{5} \mathrm{Si}$ requires $\left.M \mathrm{~K}^{+}, 407.1656\right]$.

Methyl (E)-6-trimethylsilylhex-2-en-5-ynoate

A solution of trimethylsilylethynylmagnesium bromide in tetrahydrofuran [93.5 mmol , prepared from trimethylsilylacetylene ($13.2 \mathrm{~cm}^{3}, 93.5 \mathrm{mmol}$) by treatment with ethylmagnesium bromide ($2.06 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in tetrahydrofuran; $45.4 \mathrm{~cm}^{3}, 95.3$ mmol) in tetrahydrofuran ($187 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ for 1 h] was
added dropwise under an atmosphere of argon to a mixture of $\mathrm{CuBr}(1.22 \mathrm{~g}, 8.50 \mathrm{mmol})$ and methyl (E)-4-bromobut-2-enoate $\left(10.0 \mathrm{~cm}^{3}, 85.0 \mathrm{mmol}\right)$ in tetrahydrofuran $\left(50 \mathrm{~cm}^{3}\right)$ at $-10^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then at room temperature for 1 h . After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}\left(150 \mathrm{~cm}^{3}\right)$ and ether ($200 \mathrm{~cm}^{3}$) to the mixture, the organic layer was separated and the aqueous layer was extracted with ether ($100 \mathrm{~cm}^{3}$). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated under reduced pressure and passed through a short silica gel column to give the title ester ($13.7 \mathrm{~g}, 82 \%$) as a light brown oil which was sufficiently pure as obtained for the following reaction; $v_{\text {max }} / \mathrm{cm}^{-1} 2970,2180$, $1728,1660,1440,1420,1340,1278,1269,1175,1070,1050$, $1020,990,938,850,760$ and $700 ; \delta_{\mathrm{H}} 0.16(9 \mathrm{H}, \mathrm{s}), 3.15(2 \mathrm{H}, \mathrm{dd}$, $J 2.0,5.2), 3.73(3 \mathrm{H}, \mathrm{s}), 6.12(1 \mathrm{H}, \mathrm{dt}, J 2.0,15.4), 6.89(1 \mathrm{H}, \mathrm{dt}$, $J 5.2,15.4$); $\delta_{\mathrm{C}}-0.07$ (3 C), 22.9, 51.5, 88.6, 100.8, 122.6, 142.3 and 166.6.

(R)-4-(tert-Butyldimethylsiloxy)-2-[(2Z,5E)-6-methoxy-carbonyl-2-trimethylsilylhex-2,5-dienyl]cyclopent-2-enone

 According to the same procedure described above for preparation of compound 5 , the title compound ($1.01 \mathrm{~g}, 81 \%$) was synthesized from $3(0.900 \mathrm{~g}, 2.94 \mathrm{mmol})$ and methyl $(E)-6$ -trimethylsilylhex-2-en-5-ynoate ($785 \mathrm{mg}, 4.0 \mathrm{mmol}$) using $\mathrm{BH}_{3} \cdot$ THF ($1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in THF; $4.0 \mathrm{~cm}^{3}, 4.0 \mathrm{mmol}$), cyclohexene ($0.81 \mathrm{~cm}^{3}, 8.0 \mathrm{mmol}$), THF ($5.5 \mathrm{~cm}^{3}$), $\left[\mathrm{Pd}(\mathrm{PPh})_{4}\right]$ ($102 \mathrm{mg}, 0.088 \mathrm{mmol}, 3 \mathrm{~mol} \%$), $3 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}\left(2.7 \mathrm{~cm}^{3}, 8.1\right.$ $\mathrm{mmol})$ and benzene ($33 \mathrm{~cm}^{3}$) as a clear oil; $[\alpha]_{D}^{22}+2.14(c 0.58$ in CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 2930,2870,1718,1660,1620,1470,1440$, $1410,1350,1330,1260,1200,1170,1080,1010,901,840,780$ and $760 ; \delta_{\mathrm{H}} 0.09$ and $0.10(15 \mathrm{H}, c a .1: 2,2 \mathrm{~s}), 0.88(9 \mathrm{H}, \mathrm{s}), 2.28$ $(1 \mathrm{H}, \mathrm{dd}, J 18.3,2.0), 2.75(1 \mathrm{H}, \mathrm{dd}, J 18.3,5.9), 2.88-3.01(2 \mathrm{H}$, m), 3.03-3.11 ($2 \mathrm{H}, \mathrm{m}$), $3.72(3 \mathrm{H}, \mathrm{s}), 4.81-4.92(1 \mathrm{H}, \mathrm{m}), 5.83$ (1 $\mathrm{H}, \mathrm{dt}, J 15.7,1.7), 5.94(1 \mathrm{H}, \mathrm{t}, J 7.5), 6.89-6.94(1 \mathrm{H}, \mathrm{m})$ and 6.96 ($1 \mathrm{H}, \mathrm{dt}, J 15.7,6.2$); $\delta_{\mathrm{C}}-4.7$ (2 C), 0.09 (3 C), 18.0, 25.7 (3 C), $32.7,34.5,45.6,51.4,68.7,121.5,139.1,139.4,146.6,146.9$, 158.0, 166.8 and 205.4.
(R)-4-(tert-Butyldimethylsiloxy)-2-[(E)-6-methoxycarbonyl-2-oxohex-5-enyl]cyclopent-2-enone $1[\mathrm{R}=(\boldsymbol{E})-\mathrm{CH}=\mathbf{C H}-]$

By a procedure similar to that described for the preparation of $1\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ from 5 , compound $1[\mathrm{R}=(E)-\mathrm{CH}=\mathrm{CH}]$ ($519 \mathrm{mg}, 59 \%$) was synthesized from (R)-4-(tert-butyldimethyl-siloxy)-2-[(2Z,5E)-6-methoxycarbonyl-2-trimethylsilylhex-2,5-dien-1-yl]cyclopent-2-enone ($1.01 \mathrm{~g}, 2.389 \mathrm{mmol}$) as a clear oil; $[\alpha]_{\mathrm{D}}^{21}+3.89\left(c 0.72\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \nu_{\max } / \mathrm{cm}^{-1}$ 2930, 2860, 1710, $1660,1420,1350,1280,1250,1200,1170,1080,970,905,820$ and $780 ; \delta_{\mathrm{H}} 0.11$ and 0.12 (each $3 \mathrm{H}, 2 \mathrm{~s}$), $0.89(9 \mathrm{H}, \mathrm{s}), 2.27$ ($1 \mathrm{H}, \mathrm{dd}, J 18.3,2.1$), 2.42-2.54 ($1 \mathrm{H}, \mathrm{m}$), 2.62-2.70 ($2 \mathrm{H}, \mathrm{m}$), 2.76 ($1 \mathrm{H}, \mathrm{dd}, J 18.3,5.9$), 3.23 ($1 \mathrm{H}, \mathrm{d}, J 17.2$), 3.41 ($1 \mathrm{H}, \mathrm{d}$, $J 17.2$), 3.71 ($3 \mathrm{H}, \mathrm{s}$), 4.93-5.04 ($1 \mathrm{H}, \mathrm{m}$), 5.82 ($1 \mathrm{H}, \mathrm{dt}, J 15.7$, 1.6), $6.90(1 \mathrm{H}, \mathrm{dt}, J 15.7,6.8)$ and $7.28-7.39(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}$ -4.7 (2 C), 18.1, 25.8 (3 C), 25.9, 37.8, 40.9, 44.7, 51.4, 69.2, 121.8, 139.2, 147.1, 160.5, 166.8, 204.2 and 205.1 [Found (FAB-HRMS): $\mathrm{M}+\mathrm{K}^{+}, 405.1509 . \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{KO}_{5} \mathrm{Si}$ requires $\left.M \mathrm{~K}^{+}, 405.1500\right]$.

General procedure for the synthesis of 6-keto-PGs from the enone 1

$\mathrm{Bu}^{\mathrm{t}} \mathrm{Li}\left(1.7 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ in pentane; 3.0 mmol) was added under an atmosphere of dry argon to a solution of (S, E)-3-(tert-butyldimethylsiloxy)-1-iodooct-1-ene, \dagger^{+4} or $(3 S, 5 S, E)$-(tert-butyldimethylsiloxy)-1-iodo-5-methylnon-1-ene, \dagger^{\dagger} (1.5 mmol , $\left.>99 \% \mathrm{ee}^{4}\right)$ in ether $\left(10 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$. After the mixture had been stirred for 30 min at this temperature, 2-thienyl(cyano)copper lithium ($0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ in THF, $7.2 \mathrm{~cm}^{3} ; 1.8 \mathrm{mmol}$) was added to it at $-78^{\circ} \mathrm{C}$. Stirring was continued at this temperature for 30 min after which a solution of $1(1.0 \mathrm{mmol})$ in ether ($5 \mathrm{~cm}^{3}$) was added dropwise to the mixture. After this had been stirred at $-78^{\circ} \mathrm{C}$ for 1 h , the mixture was poured
into a stirred mixture of hexane $\left(30 \mathrm{~cm}^{3}\right)$ and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(30$ cm^{3}). The organic layer was separated and the aqueous layer was extracted with hexane $\left(20 \mathrm{~cm}^{3}\right)$. The combined organic layers were washed with brine ($20 \mathrm{~cm}^{3}$), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated under reduced pressure and purified by column chromatography on silica gel to afford the bis-silyl ether of 6-keto-PG methyl ester.
Desilylation (HF-pyridine, pyridine, MeCN) ${ }^{3}$ and hydrolysis of the methyl ester moiety (PLE, phosphate buffer, acetone) ${ }^{10}$ of bis-silyl ether of PG methyl ester were carried out according to the customary literature procedures for the synthesis of PGEs.

Bis-tert-butyldimethylsiloxy ether of 6-keto-prostaglandin \mathbf{E}_{1} methyl ester 8a

Reaction of compound 1 ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2}$), $(80.0 \mathrm{mg}, 0.217$ mmol) with 7 a [0.326 mmol , prepared in situ as described in the general procedure from (S, E)-3-(tert-butyldimethylsiloxy)-1-iodooct-1-ene ($120.1 \mathrm{mg}, 0.326 \mathrm{mmol}$) and $\mathrm{Bu}^{t} \mathrm{Li}(0.652 \mathrm{mmol})$ gave $8 \mathbf{8}(98 \mathrm{mg}, 74 \%) ; \ddagger[\alpha]_{\mathrm{D}}^{21}-38.6$ (c 0.46 in MeOH), lit., ${ }^{3 b}$ $[\alpha]_{\mathrm{D}}^{22}-39.3$ (c 1.04 in MeOH).

Bis-tert-butyldimethylsiloxy ether of ornoprostil 8b

Reaction of compound 1 ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2}$) ($79.0 \mathrm{mg}, 0.214$ mmol) with 7 b [0.321 mmol , prepared in situ as described in the general procedure from ($3 S, 5 S, E$)-3-(tert-butyldimethylsil-oxy)-1-iodo-5-methylnon-1-ene ($127.2 \mathrm{mg}, 0.321 \mathrm{mmol}$) and $\mathrm{Bu}^{\prime} \mathrm{Li}(0.642 \mathrm{mmol})$ gave $\mathbf{8 b}(101 \mathrm{mg}, 74 \%)$ as a clear oil; $[\alpha]_{\mathrm{D}}^{21}-37.5\left(c 1.164\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}$ 2930, 2850, 1736, $1718,1460,1430,1360,1240,1155,1093,1050,1000,965,937$, 870,830 and $770 ; \delta_{\mathrm{H}} 0.01$ and 0.04 (each $6 \mathrm{H}, \mathrm{s}$), 0.78-0.92 ($6 \mathrm{H}, \mathrm{m}$), 0.86 and 0.87 (each $9 \mathrm{H}, \mathrm{s}$), $0.98-1.70(13 \mathrm{H}, \mathrm{m}), 2.10-$ $2.70(10 \mathrm{H}, \mathrm{m}), 3.65(3 \mathrm{H}, \mathrm{s}), 4.02-4.20(2 \mathrm{H}, \mathrm{m}), 5.43-5.56(2 \mathrm{H}$, $\mathrm{m}) ; \delta_{\mathrm{C}}-4.72,-4.68,-4.57,-4.14,14.1,18.0,18.2,20.0,23.1$, $24.4,25.6,25.8$ (3 C), 25.9 (3 C), 29.1, 29.2, 33.8, 36.8, 39.9, 42.4, $46.2,46.8,49.6,51.5,52.8,71.1,73.4,128.4,136.8,173.7,207.5$ and 214.2.

Ornoprostil

Treatment of compound $\mathbf{8 b}(58.2 \mathrm{mg}, 0.091 \mathrm{mmol})$ with $\mathrm{HF}-$ pyridine ($0.154 \mathrm{~cm}^{3}$) and pyridine ($0.18 \mathrm{~cm}^{3}$) in MeCN (3.0 cm^{3}) at room temperature for 4 h gave ornoprostil (34.8 mg , $93 \%) ; \ddagger[\alpha]_{\mathrm{D}}^{26}-41.6(c 0.52$ in MeOH$)$, lit. ${ }^{3 c}[\alpha]_{\mathrm{D}}^{25}-44.9(c$ 0.44 in MeOH).

Bis-tert-butyldimethylsilyl ether of $\Delta^{\mathbf{2}}$-trans-6-ketoprostaglandin E_{1} methyl ester 10

Reaction of compound $1[\mathrm{R}=(E)-\mathrm{CH}=\mathrm{CH}](27 \mathrm{mg}, 0.0737$ $\mathrm{mmol})$ with $7 \mathrm{a}(0.111 \mathrm{mmol})$ gave $10(31.8 \mathrm{mg}, 71 \%)$ as a clear oil; $[\alpha]_{\mathrm{D}}^{21}-43.4\left(c 0.67\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 2930,2860,1720$, $1660,1485,1440,1410,1370,1260,1160,1100,1010,970,870$, 840 and $780 ; \delta_{\mathrm{H}} 0.03$ and 0.04 (each $\left.6 \mathrm{H}, \mathrm{s}\right), 0.86-0.88(21 \mathrm{H}, \mathrm{m})$, $1.15-1.50(8 \mathrm{H}, \mathrm{m}), 2.25-2.75(10 \mathrm{H}, \mathrm{m}), 3.71(3 \mathrm{H}, \mathrm{s}), 4.03-4.14$ $(2 \mathrm{H}, \mathrm{m}), 5.47(1 \mathrm{H}, \mathrm{dd}, J 15.4,6.6), 5.55(1 \mathrm{H}, \mathrm{dd}, J 15.4,4.4)$, $5.81(1 \mathrm{H}, \mathrm{d}, J 15.7)$ and $6.91(1 \mathrm{H}, \mathrm{dt}, J 15.7,6.5) ; \delta_{\mathrm{c}}-4.75$, $-4.70,-4.60,-4.30,14.0,18.0,18.2,22.6,25.0,25.7$ (4C), 25.9 (3C), 31.8, 38.4, 39.8, 40.8, 46.6, 49.9, 51.4, 53.1, 72.5, 73.2, 121.7, 128.1, 137.1, 147.2, 166.7, 206.0 and 214.0.

Δ^{2}-trans-6-Keto-prostaglandin E_{1} methyl ester

Treatment of compound $10(31.8 \mathrm{mg}, 0.0524 \mathrm{mmol})$ with HF-pyridine ($0.1 \mathrm{~cm}^{3}$) and pyridine ($0.11 \mathrm{~cm}^{3}$) in MeCN (1.9 cm^{3}) at room temperature for 4 h gave Δ^{2}-trans-6-ketoprostaglandin E_{1} methyl ester ($18.9 \mathrm{mg}, 95 \%$) as a sticky oil; $[\alpha]_{\mathrm{D}}^{22}-55.1\left(c 0.41\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \nu_{\text {max }} / \mathrm{cm}^{-1} 3375,2920,2860$, $1710,1660,1440,1410,1320,1280,1200,1160,1070,1040,970$, 850 and $750 ; \delta_{\mathrm{H}} 0.80-0.95(3 \mathrm{H}, \mathrm{m}), 1.15-1.60(8 \mathrm{H}, \mathrm{m}), 2.30-$

[^1]$2.83(10 \mathrm{H}, \mathrm{m}), 3.71(3 \mathrm{H}, \mathrm{s}), 4.01-4.16(2 \mathrm{H}, \mathrm{m}), 5.51(1 \mathrm{H}, \mathrm{dd}, J$ $15.2,7.8$), 5.61 ($1 \mathrm{H}, \mathrm{dd}, J 15.2,6.6$), 5.81 ($1 \mathrm{H}, \mathrm{d}, J 15.7$) and 6.90 ($1 \mathrm{H}, \mathrm{dt}, J 15.7,6.6$); $\delta_{\mathrm{C}} 14.0,22.6,25.1,25.9,31.6,37.2$, $39.8,40.9,45.1,50.4,51.5,54.2,72.0,72.6,121.7,130.4,137.5$, 147.2, 166.8, 206.4 and 213.0.

Δ^{2}-trans-6-Keto-prostaglandin \mathbf{E}_{1}

Treatment of Δ^{2}-trans-6-keto-prostaglandin E_{1} methyl ester $(18.9 \mathrm{mg}, 0.0498 \mathrm{mmol})$ with porcine liver esterase $\left(50 \mathrm{~mm}^{3}, c a\right.$. 120 units/ethyl butyrate, Sigma) in acetone ($0.97 \mathrm{~cm}^{3}$) and phosphate buffer ($2.32 \mathrm{~cm}^{3} ; \mathrm{pH} 8$) at room temperature for 6 h gave Δ^{2}-trans-6-keto-prostaglandin $\mathrm{E}_{1}(15.3 \mathrm{mg}, 84 \%)$ as a sticky oil; $[\alpha]_{\mathrm{D}}^{22}-48.1(c 0.20$ in MeOH$) ; v_{\max } / \mathrm{cm}^{-1} 3350,2910$, $2849,1700,1650,1400,1370,1280,1240,1210,1160,1070,960$, 850 and $750 ; \delta_{\mathrm{H}} 0.80-1.00(3 \mathrm{H}, \mathrm{m}), 1.05-1.65(8 \mathrm{H}, \mathrm{m}), 2.31-$ $2.72(9 \mathrm{H}, \mathrm{m}), 2.78(1 \mathrm{H}, \mathrm{dd}, J 18.4,7.4), 4.01-4.17(2 \mathrm{H}, \mathrm{m})$, 5.45-5.65 ($2 \mathrm{H}, \mathrm{m}$), $5.80(1 \mathrm{H}, \mathrm{d}, J 15.7$) and $6.95(1 \mathrm{H}, \mathrm{dt}, J 15.7$, $6.3)$; $\delta_{\mathrm{C}} 14.0,22.6,25.2,26.0,31.6,37.0,40.0,40.6,45.2,50.4$, $53.9,72.1,72.7,121.6,130.4,137.5,149.0,170.0,206.5$ and 213.2.

References

1 C. P. Quilley, P. Y.-K. Wong and J. C. McGiff, European J. Pharmacol., 1979, 57, 273. J. E. Lock, P. M. Olley, F. Coceani, F. Hamilton and G. Doubilet, Prostaglandins, 1979, 18, 303. F. Coceani, E. Bodach, E. P. White and P. M. Olley, Prostaglandins, 1980, 19, 109. H. L. Lippton, B. M. Chapnick, A. L. Hyman and P. J. Kadowiz, Prostaglandins, 1980, 19, 299.

2 Drugs Future, 1987, 12, 1023; Res. Discl., 1985, 256, 400 (Chem Abstr., 1986, 104, 224747c)
3 (a) M. Hayashi and K. Shimoji and Y. Arai, Japan Kokai, 1979, 54-44639; (b) T. Tanaka, A. Hazato, K. Bannai, N. Okamura, S. Sugiura, K. Manabe, S. Kurozumi, M. Suzuki and R. Noyori, Tetrahedron Lett., 1984, 25, 4947; (c) T. Tanaka, A. Hazato, K. Bannai, N. Okamura, S. Sugiura, K. Manabe, T. Toru, S. Kurozumi, M. Suzuki, T. Kawagishi and R. Noyori, Tetrahedron, 1987, 43, 813.
4 (a) S. Okamato, Y. Kobayashi, H. Kato, K. Hori, T. Takahashi, J. Tsuji and F. Sato, J. Org. Chem., 1988, 53, 5590; (b) S. Okamoto, N. Ono, K. Tani, Y. Yoshida and F. Sato, J. Chem. Soc., Chem. Commun., 1994, 279; (c) N. Ono, Y. Kawanaka, Y. Yoshida and F. Sato, J. Chem. Soc., Chem. Commun., 1994, 1251; (d) Y. Yoshida, Y. Sato, S. Okamoto and F. Sato, J. Chem. Soc., Chem. Commun., 1995, 811 ; (e) Y. Yoshida, N. Ono and F. Sato, J. Org. Chem., 1994, 59, 6135 and references cited therein.
5 G. Zweifel and S. J. Backlund, J. Am. Chem. Soc., 1977, 99, 3184.
6 N. Miyaura, T. Yano and A. Suzuki, Tetrahedron Lett., 1980, 21, 2865.

7 R. K. Boeckman, Jr., and K. J. Bruza, J. Org. Chem., 1979, 44, 4781; G. Stork and M. E. Jung, J. Am. Chem. Soc., 1974, 96, 3682.

8 For example, M. Hayashi, S. Koori and M. Kawamura, Japan Kokai, 1976, 51-70754.
9 C. J. Moody and P. Shah, J. Chem. Soc., Perkin Trans. 1, 1988, 3249.
10 A. Hazato, T. Tanaka, T. Toru, N. Okamura, K. Bannai, K. Sakauchi, S. Sugiura, K. Manabe and S. Kurozumi, Nippon Kagaku Kaishi, 1983, 1390.

Paper 5/05342K
Received 9th August 1995
Accepted 25th September 1995

[^0]: \dagger Commercially available from Nissan Chemical Industries, Ltd. (Japan).

[^1]: \ddagger The spectroscopic data for 8a and ornoprostil were in good agreement with the literature ones (see refs. 2, $3 b$ and $3 c$).

